数据中心网络架构
解决方案 数据中心网络架构

一、传统数据中心网络架构

数据中心前端计算网络主要由大量的二层接入设备及少量的三层设备组成,传统上是标准的三层结构(如下图所示):


传统数据中心网络三层架构

传统的网络模型在很长一段时间内,支撑了各种类型的数据中心,但随着互联网的发展以及企业IT信息化水平的提高,新的应用类型及数量急剧增长。随着数据中心规模的不断膨胀,以及虚拟化、云计算等新技术的不断发展,仅仅使用传统的网络技术越来越无法适应业务发展的需要。

二、数据中心网络的新变化

对于互联网企业,承载具体应用的数据中心的计算资源及网络节点常常满负荷运转;而对于传统企业,随着自身业务量的增加,以及各类业务互联网化的需求,对数据中心的整体的吞吐量也提出了新的要求。

服务器万兆网络接入渐成主流

万兆以太网凭借其技术优势,替代其他网络接入技术,成为高性能网络的不二选择。目前新的数据中心,万兆网络接入已成为事实上的标准。

数据中心流量模型发生显著变化

传统的数据中心内,服务器主要用于对外提供业务访问,不同的业务通过安全分区及VLAN隔离。一个分区通常集中了该业务所需的计算、网络及存储资源,不同的分区之间或者禁止互访,或者经由核心交换通过三层网络交互,数据中心的网络流量大部分集中于南北向。

在这种设计下,不同分区间计算资源无法共享,资源利用率低下的问题越来越突出。通过虚拟化技术、云计算管理技术等,将各个分区间的资源进行池化,实现数据中心内资源的有效利用。而随着这些新技术的兴起和应用,新的业务需求如虚拟机迁移、数据同步、数据备份、协同计算等在数据中心内开始实现部署,数据中心内部东西向流量开始大幅度增加。

物理二层向逻辑二层转变

在虚拟化初期,虚拟机管理及迁移主要依靠物理的网络,由于迁移本身要求二层网络,因此数据中心内部东西向流量主要是二层流量。为增加二层物理网络的规模,并提高链路利用率,出现了大二层网络技术。

随着虚拟化数据中心规模的扩大,以及云化管理的深入,物理网络的种种限制越来越不适应虚拟化的要求,由此提出了VXLAN等网络Overlay方案,在这一方案下,物理网络中的东西向流量类型也逐渐由二层向三层转变,通过增加封装,将网络拓扑由物理二层变为逻辑二层,同时提供逻辑二层的划分管理,更好的满足了多租户的需求。

VXLANOverlay技术都是通过将MAC封装在IP之上,实现对物理网络的屏蔽,解决了物理网络VLAN数量限制、接入交换机MAC表项有限等问题。同时通过提供统一的逻辑网络管理工具,方便的实现了虚拟机HA迁移时网络策略跟随的问题,大大降低了虚拟化对网络的依赖,成为了目前网络虚拟化的主要发展方向。

越来越多的网络扁平化需求

随着虚拟化技术的进步,使得低延迟的服务器间通信和更高的双向带宽需求变得更加迫切。然而传统的网络核心、汇聚和接入的三层结构,服务器虚拟化后还有一个虚拟交换机层,而随着刀片服务器的广泛应用,刀片式交换机也给网络添加了一层交换。如此之多的网络层次,使得数据中心计算节点间通信延时大幅增加,这就需要网络化架构向扁平化方向发展,主要目标是在任意两点之间尽量减少网络架构的数目。

网络扁平化后,减少了中间层次,对核心设备交换能力要求降低,对于数据中心而言,后续扩容只需要以标准的机柜(包含服务器及柜顶交换单元)为单位增加即可,这样既满足了数据中心收敛比的要求,又能满足服务器快速上线需要。扁平化成为互联网企业网络设计不断追求的目标。


数据中心网络采用的二层扁平结构

三、未来弹性、自适应的数据中心网络

我们同样注意到,物理网络架构改变后一些问题仍然存在,仅仅依靠对传统技术的修修补补已经无法满足未来数据中心网络的需求。

数据中心规模越来越大,给运维管理带来压力。现在(特别是大型互联网企业)的数据中心,规模越来越大。除了各个层次大量的交换机外,可能还需要部署防火墙、防攻击设备、负载均衡、流量清洗等等网络安全设备,设备类型也会越来越丰富。同时,这些网络设备来自不同的厂家,拥有不一样的操作方式。这些对运维人员的能力提出了更高的要求。

版本更新、业务变更越来越困难。网络需要变更以适应用户业务发展的需要,同时设备厂家会根据需要不定期发布软件修正版本。但当数据中心发展到一定规模后,无论是业务变更还是版本更新,都变得非常困难,这既有设备规模过大带来的巨大工作量的问题,也有如何保证业务连续不中断的考虑。

精确的流量控制越来越难。当前流量控制主要是基于ACLQoS,通过识别特定的流量、对其应用特定的策略,来实现对业务流量的管控。由于流量策略都是基于管理员对流量运行的假设,在各个设备预先配置来实现,且策略类型较少,而实际网络上业务流量瞬息万变,预先设置的策略往往不能很好的匹配,无法实现复杂的管理控制逻辑,使得QoS实施效果不佳。

归结以上问题,实际上是网络缺乏统一的"大脑"。一直以来,网络的工作方式是:网络节点之间通过各种交互机制,独立的学习整个网络拓扑,自行决定与其他节点的交互方式;当流量过来时,根据节点间交互做出的决策,独立的转发相应报文;当网络中节点发生变化时,其他节点感知变化重新计算路径。网络设备的这种分散决策的特点,在此前很长一段时间内满足了互联互通的需要,但由于这种分散决策机制缺少全局掌控,在需要流量精细化控制管理的今天,表现出越来越多的问题。

经过多年的发展,SDN为解决这些难题提供了可行的解决方案。它通过集中的控制器来实现对整网设备的监控和管理,利用软件的灵活、动态可扩展,提供丰富的管理控制策略,通过开放相关API,可以集成第三方APP,实现更多的个性化的网络控制。



典型SDN控制器架构

SDN网络是一种全新的网络。在这样的网络中,控制器就是大脑,它掌控全局,学习整网的拓扑,管理网络中的各个节点。网络中的其他节点,只需要向"大脑"上报网络变化,并按照"大脑"的指挥,完成自己的工作即可。SDN这种集中管控、灵活动态的网络部署必将成为未来的发展趋势。